Para peneliti di ETH Zurich telah menciptakan kucing Schrödinger terberat dengan menempatkan kristal dalam superposisi dua keadaan osilasi. Hasilnya dapat menghasilkan qubit yang lebih kuat dan membantu menjelaskan mengapa qubit tidak diamati dalam kehidupan sehari-hari.
- Para peneliti di ETH Zurich telah menciptakan kucing terberat Schrödinger.
- Untuk ini, mereka menggabungkan kristal berosilasi dengan sirkuit superkonduktor.
- Mereka berharap untuk lebih memahami mengapa efek kuantum menghilang di dunia makroskopik.
Bahkan jika Anda bukan seorang fisikawan kuantum, Anda mungkin pernah mendengar tentang kucing terkenal Schrödinger. Erwin Schrödinger menemukan kucing yang bisa hidup dan mati pada saat yang sama dalam sebuah eksperimen pemikiran pada tahun 1935. Paradoks yang jelas – lagipula, dalam kehidupan sehari-hari kita hanya melihat kucing yang hidup atau hidup. atau Mati – mendorong para ilmuwan untuk mencoba mewujudkan situasi serupa di laboratorium. Sejauh ini, mereka telah mampu melakukannya dengan menggunakan, misalnya, atom atau molekul dalam keadaan superposisi mekanika kuantum yang berada di dua tempat pada waktu yang sama.
Di ETH, tim peneliti yang dipimpin oleh Yiwen Chu, seorang profesor di Laboratorium Fisika Solid State, menciptakan kucing Schrödinger yang jauh lebih berat dengan menempatkan kristal kecil dalam superposisi dua keadaan osilasi. Hasil mereka, yang diterbitkan minggu ini di jurnal ilmiah Science, dapat menghasilkan qubit yang lebih kuat dan menjelaskan misteri mengapa superposisi kuantum tidak diamati di dunia makroskopik.
kucing di dalam kotak
Dalam eksperimen pemikiran asli Schrödinger, seekor kucing dikunci di dalam kotak logam dengan bahan radioaktif, penghitung Geiger, dan sebotol racun. Dalam jangka waktu tertentu – satu jam, misalnya -[{” attribute=””>atom in the substance may or may not decay through a quantum mechanical process with a certain probability, and the decay products might cause the Geiger counter to go off and trigger a mechanism that smashes the flask containing the poison, which would eventually kill the cat. Since an outside observer cannot know whether an atom has actually decayed, he or she also doesn’t know whether the cat is alive or dead – according to quantum mechanics, which governs the decay of the atom, it should be in an alive/dead superposition state. (Schrödinger’s idea is commemorated by a life-size cat figure outside his former home at Huttenstrasse 9 in Zurich).
“Of course, in the lab we can’t realize such an experiment with an actual cat weighing several kilograms,” says Chu. Instead, she and her co-workers managed to create a so-called cat state using an oscillating crystal, which represents the cat, with a superconducting circuit representing the original atom. That circuit is essentially a quantum bit or qubit that can take on the logical states “0” or “1” or a superposition of both states, “0+1”. The link between the qubit and the crystal “cat” is not a Geiger counter and poison, but rather a layer of piezoelectric material that creates an electric field when the crystal changes shape while oscillating. That electric field can be coupled to the electric field of the qubit, and hence the superposition state of the qubit can be transferred to the crystal.
Simultaneous oscillations in opposite directions
As a result, the crystal can now oscillate in two directions at the same time – up/down and down/up, for instance. Those two directions represent the “alive” or “dead” states of the cat. “By putting the two oscillation states of the crystal in a superposition, we have effectively created a Schrödinger cat weighing 16 micrograms,” explains Chu. That is roughly the mass of a fine grain of sand and nowhere near that of a cat, but still several billion times heavier than an atom or molecule, making it the fattest quantum cat to date.
In order for the oscillation states to be true cat states, it is important that they be macroscopically distinguishable. This means that the separation of the “up” and “down” states should be larger than any thermal or quantum fluctuations of the positions of the atoms inside the crystal. Chu and her colleagues checked this by measuring the spatial separation of the two states using the superconducting qubit. Even though the measured separation was only a billionth of a billionth of a meter – smaller than an atom, in fact – it was large enough to clearly distinguish the states.
Measuring small disturbances with cat states
In the future, Chu would like to push the mass limits of her crystal cats even further. “This is interesting because it will allow us to better understand the reason behind the disappearance of quantum effects in the macroscopic world of real cats,” she says. Beyond this rather academic interest, there are also potential applications in quantum technologies. For instance, quantum information stored in qubits could be made more robust by using cat states made up of a huge number of atoms in a crystal rather than relying on single atoms or ions, as is currently done. Also, the extreme sensitivity of massive objects in superposition states to external noise could be exploited for precise measurements of tiny disturbances such as gravitational waves or for detecting dark matter.
Reference: “Schrödinger cat states of a 16-microgram mechanical oscillator” by Marius Bild, Matteo Fadel, Yu Yang, Uwe von Lüpke, Phillip Martin, Alessandro Bruno and Yiwen Chu, 20 April 2023, Science.
DOI: 10.1126/science.adf7553
“Geek tv yang sangat menawan. Penjelajah. Penggemar makanan. Penggemar budaya pop yang ramah hipster. Guru zombie seumur hidup.”
More Stories
Kapan para astronot akan diluncurkan?
Perjalanan seorang miliarder ke luar angkasa “berisiko”
Administrasi Penerbangan Federal menangguhkan penerbangan SpaceX setelah roket yang terbakar jatuh saat mendarat